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Abstract

Users face a dazzling array of choices on the Web when
it comes to choosing which product to buy, which video
to watch, etc. The trend of social information process-
ing means users increasingly rely not only on their own
preferences, but also on friends when making various
adoption decisions. In this paper, we investigate the ef-
fects of social correlation on users’ adoption of items.
Given a user-user social graph and an item-user adop-
tion graph, we seek to answer the following questions:
1) whether the items adopted by a user correlate to
items adopted by her friends, and 2) how to incorpo-
rate social correlation in order to improve prediction
of unobserved item adoptions. We propose the Social
Correlation model based on Latent Dirichlet Allocation
(LDA) that decomposes the adoption graph into a set
of latent factors reflecting user preferences, and a social
correlation matrix reflecting the degree of correlation
from one user to another. This matrix is learned (rather
than pre-assigned), has probabilistic interpretation, and
preserves the underlying social network structure. We
further devise a Hybrid model that combines a user’s
own latent factors with her friends’ for adoption predic-
tion. Experiments on Epinions and LiveJournal data
sets show that our proposed models outperform the ap-
proach based on latent factors only (LDA).

1 Introduction

Unprecedented progress and innovation provide con-
sumers a wide variety of choices. Consumer items such
as books, cameras and movies come in various subjects,
features and genres. Online shopping provides access to
these items to anyone with an internet connection. Con-
sequently, sellers anywhere can reach consumers any-
where, and consumers have access to increasing num-
ber of products. The direct effect is consumers have
a harder time making purchasing decisions, while sell-
ers do not know what to sell and whom to sell it to.
Beyond commerce, users face a similar problem on the
Web in general, when deciding which article to read,
which group to join, etc.
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To address this information overload, retailers at-
tempt to assist consumers by putting in place decision-
making aids such as bestseller lists, listing items fre-
quently bought together, etc. However, given the lim-
ited space in bestseller lists or any recommendation
list targeted at everyone, such aids would favor the
very popular items. Some merchants, such as Amazon
and Netflix, have put in place more personalized rec-
ommender systems based on the individual user’s past
transactions. However, such approaches frequently suf-
fer from the cold start problem: no recommendation
can be generated for users who have purchased very few
items. Therefore, while attractive retail opportunity lies
in the long-tail products, it is difficult for such products
to be matched to the relevant users.

In a trend known as social information processing,
users increasingly rely on one another to organize the
complex information on the Web. This is evident from
the abundant amount of user-generated content, such
as tags, ratings, and reviews, all of which collectively
aim to allow items to be more easily discovered by
other users. Social networks have also become a conduit
for discovering relevant information. In such platforms
as Twitter or Epinions, users can opt to receive only
content generated by other users whom they follow or
trust. A user’s choices are increasingly driven not only
by personal preferences, but also by the preferences of
others in their social networks. This gives rise to the
phenomenon of social correlation, whereby users who
are socially related tend to make similar choices.

In this paper, we therefore aim to address the item
adoption prediction problem by studying how social
correlation plays a role in user adoption of items. Here,
item adoption could refer to various actions such as
buying a product, writing a product review, joining a
group, etc. We model the adoption relationship between
users and items as an undirected bipartite adoption
graph Ga(V, U,E) where V represents a set of items, U
represents a set of users and E represents the undirected
adoption links between V and U . We also assume as
input a social graph Gs(U, F ), where U represents the
same set of users as in Ga and F represents the social
links between users. An edge exists from u1 to u2 if u1

befriends, trusts, or follows u2. In both Ga and Gs, we
only require the binary expression of the links (present



or absent), and do not use any other form of information
such as ratings or review text to keep our model simple
and general.

Given Ga and Gs, we seek to address the following
problems:

• Learning the extent to which a user relies on social
correlation, as opposed to her personal preferences,
in making adoption choices. For a given social
link (u1, u2) ∈ F , we would like to learn a weight
that reflects the extent to which u1’s latent factors
correlate with the latent factors of u2.

• Predicting the items that a user is likely to adopt
based on social correlation. For a given pair of user
u and item v, we would like to learn the probability
that an adoption link (u, v) would exist in E.

Factorization-based approaches can model a user’s
personal preferences [14]. One such factorization is
Latent Dirichlet Allocation (LDA) [4], which learns a
set of latent factors by factorizing the adjacency matrix
of the adoption graph into two matrices: one that
reflects the importance of each latent factor to users,
and another that does the same for items. However,
this approach is inadequate because it assumes that all
items adopted by a user can all be explained by the
user’s and items’ latent factors.
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Figure 1: Example Scenario of Adoption (solid) and
Social Links (dotted)

Consider the example scenario in Figure 1. There
are two clusters of items: {v1, v2, v3} and {v4, v5, v6}.
Suppose that each cluster groups together items with
similar latent factors. Users u1 and u2 have similar
preferences, adopting items in the first cluster. Users
u3 and u4 adopt items in the second cluster. Given
that items in a cluster share similar latent factors,
these adoptions can largely be explained by the users’
having similar latent factors. However, u2’s adoption of
v4 cannot be clearly explained by latent factors alone.

Taking into account u2’s social links (dotted lines) to
u3 and u4, we hypothesize that in the case of v4, u2

depends on the preferences of her friends u3 and u4.
We propose to model social correlation directly

using factorization-based approaches. Some users may
primarily rely only on their own latent factors in making
adoptions. We say that these users have high self-
dependency values. However, most users rely on a
mixture of self-dependency and social correlation. This
is modeled by a user-user social correlation matrix I.
Based on a generative model, our approach assumes that
a user u1 adopts an item based on her preferences on
latent factors of the item with a probability proportional
to iu1,u1

∈ I also known as Self-Dependency, and based
on another user u2’s latent factors with probability
proportional to iu1,u2

∈ I. Here,
∑

u iu1,u = 1. Hence,
we seek to learn both a user’s latent factors and the
social correlation matrix from the given adoption and
social graphs.

We make the following contributions in this paper:

1. We propose two factorization models that we call
the Social Correlation and Hybrid models. Social
Correlation model decomposes an adoption graph
and social graph into three components: users’
latent factors, items’ latent factors, and social
correlation. While Hybrid model combines the
merit of the Social Correlation model and LDA.

2. Our proposed models derive the social correlation
weights from the factorization process, instead of
relying on a social graph with pre-assigned link
weights. In some cases, the weights are not known
before hand. Even if the social graph comes with
some form of weights (e.g., friendship strength),
they may not accurately reflect the dependency and
correlation among users.

3. To evaluate our proposed models, we conduct com-
prehensive experiments on two real-life data sets
from Epinions and LiveJournal. The results show
that our proposed models outperform the approach
relying on latent factors alone. We also show that
the Hybrid outperforms Social Correlation.

The rest of the paper is organized as follows.
Section 2 will discuss the past research done on modeling
items and users relationship. We establish the existence
of correlation between adoption and social links in
Section 3 through hypothesis testing. In Section 4, we
apply Latent Dirichlet Allocation (LDA) to model user
adoption of items based on latent factors. In Section 5,
we incorporate social correlation into the factorization
model. We then proceed to evaluate our methods in
Section 6. Finally we conclude our paper in Section 7.



2 Related Work

2.1 Social Correlation Here, we review several con-
cepts related to social correlation, such as homophily, in-
fluence, k-exposure, etc. Notably, we go beyond just es-
tablishing or measuring social correlation, to also make
use of it for adoption prediction.

Fond and Neville [11,20] established that social cor-
relation was a result of two processes that happen al-
ternatively over a period of time: “homophily” causing
users with similar attributes to form social links, and
“influence” causing users with social links to become
more similar in attributes. The notion of homophily
is a well known phenomenon in sociology. McPherson
et al. [19] surveyed articles establishing that homophily
exists in various social contexts such as marriage, friend-
ship, co-workers, classmates, involving similarity fac-
tors such as socio-demographic attributes. Singla and
Richardson [22] also established the correlation of search
queries among instant messaging friends. In our work,
we are concerned only with the existence of social corre-
lation and its use for adoption prediction, and not with
the underlying causes (homophily vs. influence), which
are not always observable from the data.

Liu et al. sought to measure influence [16] based on
clearly observable “following” behaviors. For instance,
it looked at how Twitter users re-tweeted postings
by others, or how authors published papers on the
same topics as cited papers. They first obtain the
topic distribution of every author based on the papers
they wrote. Then for each author a, they decide
who influences a based on the latent factors of the
authors whom a cited from. Our work is different in
the following ways. First, our focus is the adoption
prediction problem, while their focus is on measuring
influence and how it varies with the various number of
hops in the social graph. Second, our model assumes
that any friend (and not just certain friends e.g., authors
cited) could be influencers. For example, a user who
buys an item does not explicitly state whom she bases
her decision on. In such cases, the possible number of
influencers can be very large and their method may not
scale up. Therefore, we view our approach as a more
generalized approach that can work in generic settings.

Also related is the notion of k-exposure: the like-
lihood that a user would adopt an item increases with
the number k of her friends who have adopted it. Sev-
eral works have studied k-exposure with respect to such
adoptions as choosing which Wikipedia article to edit
or which LiveJournal community to join [2, 6, 7]. The
fundamental assumption here is that every user is corre-
lated with their friends in the same way. All that mat-
ters is the number of friends who have adopted an item.
In contrast, we do not make the same assumption. In

our approach, a user may be correlated with each friend
differently, and may have different self-dependency val-
ues.

Ma et al. extended the Bayesian Probabilistic Ma-
trix Factorization (BPMF) models for rating prediction
by adding social factors [17, 18]. They used the latent
factors of users and items learned from BPMF coupled
with the weighted values of the social links for item
ratings prediction. Importantly, they assume the exis-
tence of the weighted values that reflect the relationship
strength between each pair of friends. In the absence of
known weights, all users may be weighted equally. In
this work, we do not make the same assumption, and
show that it is possible to learn these weighted values
through an optimization process.

Some prior work focused on how influence propa-
gated across a network. Assuming a propagation frame-
work such that an adoption by a user would probabilis-
tically trigger a similar adoption by her friends, an in-
fluential user is one whose initial adoption would even-
tually result in the most number of total adoptions by
all users [13]. The problem of influence maximization
is orthogonal to our problem, in that influence maxi-
mization is more concerned with the total number of
adoptions triggered, while we are concerned more with
predicting individual adoption cases.

Influence is also addressed by Yang and Leskovec
as a form of information diffusion [23] with temporal
dynamics. However, their notion of influence requires
the explicit adoption of item while we consider in terms
of latent factors.

2.2 Factorization The Bayesian Probabilistic Ma-
trix Factorization (BPMF) is a popular model for low
rank matrix approximation [21] method by Salakhut-
dinov. The model avoids overfitting of other methods
such as SVD by adding Gaussian noise to the sparse
data. The Gaussian noise acts as a regularizer to
avoid overfitting the factorized matrices to the sparse
data. Salakhutdinov then showed that the model can
be approximated using a Gibbs Sampling method. The
BPMF method subsequently was applied by Koren to
rating prediction in the Netflix Prize Competition [14].
Koren combined the generalization properties of latent
factor models to neighborhood methods in collabora-
tive filtering. Koren also extended the factor models to
modeling temporal dynamics [15].

When modeling ratings, it is appropriate to use
BPMF because rating scores can be approximated to
follow the Gaussian distribution. When we want to
model simpler discrete relationships, the Latent Dirich-
let Allocation (LDA) is more suitable [4]. Instead of
Gaussian noise as regularizers, the LDA uses Dirichlet



distributions as smoothing priors which essentially be-
haves in the same way as regularizers.

There are existing works that uses Dirichlet distri-
butions to model item - user and user - user relation-
ships. Balasubramanya and Cohen had proposed Block-
LDA for modeling protein interactions [3]. The Block-
LDA tries to unite the Mixed Membership Stochastic
Blockmodels [1] and LDA to jointly model the relation-
ships. However, their approach and assumptions are
currently restricted to protein interactions only.

3 Correlation of Social & Adoption Links

We justify our research motivation by first establishing
that a correlation exists between social and adoption
links, i.e., whether users with social links also tend to
share common adoptions. We do this by performing
hypothesis tests on a real world data set obtained from
Epinions, a product review site. The social graph in
Epinions consists of trust links formed when a user
indicates her trust on another user. These trust links are
directional and not necessarily reciprocal. An adoption
link exists between a user and an item (product) if the
user has written a review for the item.

We collected the data set by crawling the Epinions
site, focusing only on the Videos & DVDs category. The
size of the data set is given in Table 1. In total, there are
close to 40K users and 7K items. There are also more
than 300K social links and 80K adoption links. Both
social and adoption links are binary (0 or 1). Although
the adoption links are binary in Epinions data set, we
can also handle weighed adoption links that represents
adoption of the same item multiple times.

Table 1: Epinions: Data Size

Count
no of users |U| 39,946
no of items |V | 6,949
no of adoption links |E| 83,763
no of social links |F | 331,509

We perform hypothesis testing using the Fisher
Exact Test [10]. Our null hypothesis H0 states that the
probability of two users having a common adoption is
independent of whether the two users have a trust link
between them. Rejecting the null hypothesis implies
accepting the alternate hypothesisH1, which states that
the probability of common adoption is dependent on
having social link.

We perform the Fisher Exact Test on the contin-
gency table in Table 2. Each value in the table repre-
sents the number of user pairs for a combination of social
link and common item adoption scenarios. The numbers
in parentheses are the expected values if the social graph
is independent of the adoption graph. As shown in the

table, the observed number of pairs with both common
adoption and social link 24,197 is far greater than the
expected 2,594.

Table 2: Epinions : Contingency Table For Pair of Users
with Social and Adoption Links

No Common Has Common Total
Adoption Adoption

No Social Link 791,271,379 6,218,597 797,489,976
(791,249,776) (6,240,200)

Has Social Link 307,312 24,197 331,509
(328,915) (2,594)

Total 791,578,691 6,242,794 797,821,485

Using Fisher Exact Test, we obtain a p-value <

2.2× 10−16 which indicates that we can reject H0, and
conclude that the presence of social links is correlated
with the presence of adoption links. We also established
similar conclusions on a second data set obtained from
LiveJournal, but do not reproduce them here due to
space consideration.

4 Factorization based on LDA

Our proposed approach is to first factorize the observed
adoption graphE into user and item latent factors based
on Latent Dirichlet Allocation (LDA), before learning
the social correlation matrix I. In this section, we
describe how we apply LDA for the item adoption
prediction problem.

LDA was formerly conceived as a way of modeling
unigram words in a document corpus [4]. Each docu-
ment is seen as a collection of words and the words are
generated as a result of the topics each document con-
tains. Using documents and words as analogy, we view
users in the adoption graph as documents, the items
they adopt as words and the latent factors of the items
as topics. We now express a statistical formulation of
LDA, and give an alternative linear algebraic formula-
tion later in this section.

The user u latent factor distribution θu follows a
symmetric Dirichlet distribution with hyper-parameters
ν, as follows:

θu ∼ Dirichlet(ν)

The latent factor zv,u ∈ {1, . . . , T } of each item v

that the user u adopts is generated by the multinomial
distribution with parameters θu, as follows:

zv,u ∼ Multinomial(θu)

The item v that the user u will adopt is generated by the
latent factor zv,u and the latent factor-item distribution
β, as follows:

ev,u ∼ β|zv,u

The latent factor-item distribution β follows a symmet-
ric Dirichlet distribution with hyper-parameters φ, as



follows:
β|zv,u ∼ Dirichlet(φ)

In the alternative linear algebraic formulation, LDA
is a factorization algorithm that takes as input anM×N

matrix E and outputs a M × T matrix β and a T ×N

matrix θ. Here, T is the number of latent factors, M
is the number of items, and N is the number of users.
Intuitively, β represents the latent factors of items, and
θ the latent factors of users.

Suppose our matrix E is as follows,

E =







ev1,u1
· · · ev1,uN

...
. . .

...
evM ,u1

· · · evM ,uN






(4.1)

The LDA algorithm takes E as input and outputs β and
θ.

LDA(E) =







βv1|1 . . . βv1|T

...
. . .

...
βvM |1 . . . βvM |T













θu1,1 . . . θuN ,1

...
. . .

...
θu1,T . . . θuN ,T







(4.2)

where each column in β and θ sums to 1. Solving for
these two matrices is fundamentally a likelihood op-
timization problem subjected to the probability con-
straints. Blei showed that the matrices are learned using
variational expectation maximization [4]. Griffiths and
Steyvers subsequently showed that LDA can be learned
easily using Gibbs Sampling [12].

When we multiply the matrices β and θ, we obtain
the dense matrix E′ which gives us the probability
whether the links exist in the original sparse matrix
E. As shown in Equation 4.3, E′ is an approximation
of the original E, only denser because it also produces
probability values for the unobserved links in E.

E ≈ (E′ = β θ)(4.3)

As the number of latent factors T approaches a
larger value, the product of the factorized matrices E′

gets more and more similar to E. However, this is not
desirable because we lose the generalization properties
of factorization algorithms and the solution becomes
more over-fitting to E.

5 Factorization with Social Correlation

Factorization by LDA alone is not sufficient to model
user adoption of items as it does not account for the
social correlation effect.

Social Correlation Matrix; We propose a N×N

social correlation matrix I to tell us how likely it is that

a user will adopt an item based on the latent factors of
other users. Each element iu,u′ reflects the likelihood
that the user u will be correlated to u′, in the sense
of making adoption decision based on the latent factors
of u′. iu,u is the self-dependency of user u, or the
likelihood that u relies on her own latent factors. The
social correlation matrix is derived as:

E ≈ E′IT(5.4)

To properly reflect the notion of correlation, I

cannot just be any N × N matrix. We require that
I must have the following properties:

• It is probabilistic. Each element iu,u′ is in the
range of [0, 1]. For each user u, we also have
∑

u′ iu,u′ = 1.

• It preserves the social network structure. Since
social correlation is based on the underlying social
network structure, iu,u′ should have non-zero value
only if there is a social link from u to u′, i.e.,
iu,u′ > 0 ⇒ (u, u′) ∈ F . In addition, we also learn
the self-dependency values iu,u for each user u.

I can be obtained in several ways. The naive way
is to calculate I by multiplying E with the inverse of
E′, i.e. I = (E′)−1E. This naive way will not work for
several reasons. First, I may over-fit leading to poor
results in link prediction. The obtained E′IT will be as
sparse as E, and thus the factorization does not help in
link prediction. Second, I may have values outside the
range of [0, 1]. In fact, they may range from negative
infinity to positive infinity. Such values do not have
clear semantics and it is hard to interpret the meaning
of these values. Third, I may have non-zero values even
if the users are not connected by social links.

Hence, instead of obtaining an exact I, we will ob-
tain an approximated I such that we minimize the er-
ror |E − E′IT |, subject to the above-mentioned con-
straints (probabilistic, social network structure). To
learn I with clear semantics, we formulate a statisti-
cal learning problem where the goal is to learn the I

which maximizes the likelihood of observing the values
in E. Maximizing the likelihood is the dual equivalent
problem of minimizing error.

Since the graphs are sparse, algorithms that scale
with the number of observed links would run faster. In
the following, we formulate such an algorithm, and show
that the complexity is indeed polynomial to the number
of observed links.

Models. Once the social correlation matrix I

has been learned, we can instantiate two adoption
prediction models as follows.



• Social Correlation represents the approach of re-
lying only on social correlation for item adoption.
We compute E′IT (see Equation 5.4) based on
the learned I, taking into account only the non-
diagonal values of I, i.e., setting iu,u = 0, ∀u ∈ U .

• Hybrid represents the approach of combining Social
Correlation and LDA, by computing E′IT with the
original learned I (with diagonal values retained).

We will experimentally establish the merits of these
models with respect to LDA in Section 6.

Special Case. Our proposed formulation sub-
sumes the underlying latent factors model. In the case
where I is the identity matrix, with 1’s as diagonal val-
ues and 0’s otherwise, then E′IT degenerates to E′,
which is the outcome by LDA factorization.

5.1 Solution Formulation We would like to illus-
trate the formulation of our algorithm using probabilis-
tic explanations. Given a user u, we will like to know
the probability that she will adopt the item v, given the
user latent factors θu and the topic latent factors β.

Suppose now that we have the edges of the social
graph F and the latent factors of all other users U

including herself, we hypothesize that the user u adopts
items based on the latent factor preferences of her
friends and the user herself. We may restate the
equation as follows,

P (ev,u|θ, β, F )

=
∑

u′∈U

P (ev,u′ , fu,u′ |θ, β, F )(5.5)

=
∑

u′∈U

P (ev,u′ |θ, β)P (fu,u′ |F )(5.6)

where fu,u′ represents that u has a directed social link
to u′. Also note that ev,u has become ev,u′ on the right
hand side of the equations. P (fu,u′ |F ) is either 0 or 1
since we do not model the probability of social links.

Equation 5.6 however is not a valid probability
equation because it does not sum to 1. In fact, the
values will exceed 1 due to the outer summation over
u′. The reason is besides knowing the probability
that u indicates u′ as a friend in the social graph
P (fu,u′ |F ) and the probability that u′ adopts item v

in the adoption graph P (ev,u′ |θ, β), we also need an
additional component that tells us the probability that
u depends on u′ in the adoption graph P (xv,u = u′|I)
(to be defined shortly). This additional component is
the social correlation that we want to determine.

Hence, our proposed factorization model is to in-
troduce the latent variable xv,u which tells us which u′

that u depends on, and the social correlation I where

its elements iu,u′ gives us the probability that u follows
the latent factors of u′. The special case is u′ = u which
tells us the self-dependency of u. The higher is iu,u, the
less the user u depends on social correlation.

Putting the above intuition formally, the probabil-
ity that u adopts an item v based on the social correla-
tion I is given by:

P (ev,u|θ, β, F, I)

=
∑

u′

P (ev,u′ , xv,u = u′, fu,u′ |θ, β, F, I)(5.7)

=
∑

u′

P (ev,u′ |θ, β)P (fu,u′ |F )P (xv,u = u′|I)(5.8)

For simplicity in the following derivations, we will take,

P (ev,u′ |θ, β) = e′v,u′(5.9)

P (fu,u′ |F ) = fu,u′(5.10)

P (xv,u = u′|I) = iu,u′(5.11)

P (ev,u|θ, β, F, I) =
∑

u′

e′v,u′fu,u′ iu,u′(5.12)

To learn the social correlation values, we maximize
the log likelihood of ev,u, ∀v ∈ V, ∀u ∈ U , using the
Expectation Maximization (EM) algorithm [9],

P (E|θ, β, F, I) =
∏

v,u

P (ev,u|θ, β, F, I)(5.13)

logP (E|θ, β, F, I) =
∑

v,u

logP (ev,u|θ, β, F, I)(5.14)

=
∑

v,u

log
∑

u′

e′v,u′fu,u′iu,u′(5.15)

5.2 Expectation Maximization Algorithm We
first show the E Step. The E Step of the EM algorithm
tries to infer for the latent variables using initial values
of I,

P (xv,u = u′|ev,u, fu,u′ , θ, β, F, I)

=
P (xv,u = u′, ev,u′ , fu,u′ |θ, β, F, I)

∑

u′′ P (xv,u = u′′, ev,u′′ , fu,u′′ |θ, β, F, I)

=
P (ev,u′ |θ, β)P (fu,u′ |F )P (xv,u = u′|I)

∑

u′′ P (ev,u′′ |θ, β)P (fu,u′′ |F )P (xv,u = u′′|I)

=
e′v,u′fu,u′iu,u′

∑

u′′ e′v,u′′fu,u′′iu,u′′

(5.16)

= h(u, u′, v)
(5.17)



Since we have introduced iu,u′ as a probabilistic
weight, hence, it must sum to one.

∑

u′

iu,u′ = 1, ∀u ∈ U

Now, we aim to maximize the log likelihood with re-
spect to the unknown social correlation I, subject to the
above constraints. In order to include the constraints
as part of the objective function, we introduce the La-
grange multipliers λu [5] and proceed to solve the fol-
lowing using differentiation,

d

d iu,u′

[

∑

v∈V

(

∑

u0∈U

log
(

∑

u1∈U

e′v,u1
fu0,u1

iu0,u1

)

− λu0

(

∑

u1∈U

iu0,u1
− 1

)

)

]

=
∑

v∈V

e′v,u′fu,u′

∑

u1∈U e′v,u1
fu,u1

iu,u1

− λu

To solve for λu, we equate the equation to 0 as follows,

∑

v∈V

e′v,u′fu,u′

∑

u1∈U e′v,u1
fu,u1

iu,u1

− λu = 0

λu =
∑

v∈V

e′v,u′fu,u′

∑

u1∈U e′v,u1
fu,u1

iu,u1

λuiu,u′ =
∑

v∈V

e′v,u′fu,u′iu,u′

∑

u1∈U e′v,u1
fu,u1

iu,u1

λu

∑

u′∈U

iu,u′ =
∑

v∈V

∑

u′∈U e′v,u′fu,u′iu,u′

∑

u1∈U e′v,u1
fu,u1

iu,u1

λu =
∑

v

1

It can be seen clearly from the equations above that λu

is the number of items u has been observed to adopt.
Now to solve for iu,u′ ,

λuiu,u′ =
∑

v∈V

e′v,u′fu,u′iu,u′

∑

u1
e′v,u1

fu,u1
iu,u1

(5.18)

iu,u′ =
1

λu

∑

v∈V

e′v,u′fu,u′ iu,u′

∑

u1
e′v,u1

fu,u1
iu,u1

(5.19)

Recall in our E step that we have calculated something
similar to the RHS of the equation. By inserting the
results of the E Step, we get

iu,u′ =
1

λu

∑

v

h(u, u′, v)

Calculating the E-Step and M-Step in an iterative
manner until convergence, we derive the EM algorithm.

5.3 Complexity Analysis In Section 3, we show
that the social and adoption graphs are sparse. That is,
the number of edges in the graph is significantly smaller
than the total number of possible edges, |F | << N2 and
|E| << MN . Since the graphs are sparse, our algorithm
complexity should scale with respect to the number of
edges instead of the number of vertices. We should also
use sparse matrices to reduce the amount of memory
required.

The efficiency of our learning algorithm can be
easily seen from Equation 5.16 of the E Step and
Equation 5.19 of the M Step. In the E Step, each user
has to compute the latent variable xv,u for the number
of items u has. The number of possible values xv,u can
take depends on the number of social links u has. Based
on this analysis, the upper bound complexity of E Step
for each iteration in the EM algorithm is the product
of number of users |U | = N , the maximum number of
items a user has and the maximum number of friends a
user has, N . max(Mu) . max(Nu). The complexity of
the M Step is similar to E Step so the overall complexity
of each iteration is in O(N . max(Mu) . max(Nu)). We
will empirically verify the running time and number of
iterations for convergence in Section 6.5.

6 Experimental Evaluation

Our objective in the experiments is to evaluate the per-
formance of our proposed methods in predicting missing
adoption links. We first empirically decide the number
of latent factors to use for the LDA decomposition. We
then compare the performance of our proposed models
with LDA for users with different self-dependency values
and numbers of items. We illustrate the rate of conver-
gence of the EM algorithm to show that our method is
scalable and efficient. We show some case examples to
illustrate how our proposed model works differently as
compared with other methods. Finally, we look at the
quality of the topics/latent factors learned.

6.1 Experimental Setup Data Set. For experi-
ments, we extract data sets from the raw Epinions data
set described in Section 3 and a separate LiveJournal
data set. The LiveJournal data set was obtained by
crawling livejournal.com to collect user profile pages.
The initial crawled set corresponded to approximately
20% of active users in LiveJournal. The items in Epin-
ions are products adopted by users while the items in
LiveJournal are communities that the users join. Since
our interest is in learning the correlation between so-
cial and adoption graphs, we prune the data set such
that each user or item has a sufficient number of links
in both graphs. Thus, we iteratively remove users with
less than three incoming/outgoing links and items, and



items with less than three users, until no such user/item
can be found in the graphs. Table 3 shows the statistics
of our Epinions and LiveJournal data sets.

Table 3: Statistics of our Data Subset

Name #users #items #social
links

#adoption
links

Epinions 2,934 2,146 66,036 135,940
LiveJournal 3,773 21,463 209,832 216,586

The statistics in Table 3 shows that the Epinions
data set and LiveJournal data set have different prop-
erties. The Epinions data set has a denser user-item
adoption graph, while the LiveJournal data set has a
denser user-user social graph. The two data sets will
give a fair overview of how our models perform in pre-
dicting missing links under different scenarios.

Methods. In the experiments, we compare the
following methods in terms of effectiveness.

• LDA represents the approach where a user relies
only on her own latent factors.

• Social Correlation represents the approach using
only social correlation (i.e., friends’ latent factors).

• Hybrid represents the approach of using both a
user’s own latent factors as well as her friends’.

The formulations of these methods were given in Sec-
tions 4 and 5 respectively.

Metrics. We first hide 30% of the user item
adoption links randomly in each data set to create a
training set with the remaining links and a testing set
with the missing links. Then for each method, we
generate a ranking of adoption links for each user based
on the probability values returned by the method. We
then construct a Precision-Recall (PR) curve for each
user, and measure the area under the PR curve (AUC).
The performance of each method will be expressed
relative to the LDA approach. The AUC ratio refers
to the ratio of a method’s AUC to LDA’s AUC. The
higher the AUC ratio, the better a method performs
relative to LDA.

6.2 Deciding the number of Latent Factors To
decide the number of latent factors for factorizing,
we measure the prediction performance of LDA while
varying the number of latent factors. Then we measure
the AUC of Precision and Recall (PR) curves for each
latent factor. The choice of AUC PR over AUC ROC is
because AUC PR gives a better measurement for skewed
data [8]. The small AUC is an artifact of the extreme
sparsity of the adoption matrices. With many more non-
existent links than hidden links for testing, the task of
predicting adoption links is naturally difficult.
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Figures 2 and 3 show the AUC with respect to
the number of latent factors. As expected, the denser
adoption graph in the Epinions data set only requires
6 latent factors and the sparser adoption graph in
LiveJournal shows that the rate of AUC increase slows
down around 40-50 latent factors. Although we can
continue to increase the number of latent factors in
LiveJournal to achieve better AUC performance, in
consideration of memory usage and time, we will limit
the number of latent topics to 45 for LiveJournal.

6.3 Self-Dependency Analysis Here, we showcase
the merits of our proposed models by examining the
AUC ratios for groups of users with varying self-
dependency values. The diagonal values in I tell us
how much each user depends on her own latent fac-
tors for items adoption. If a diagonal value iu,u is high,
the corresponding user u is said to have a high self-
dependency. Such a user is likely to adopt items based



on her own latent factors. In contrast, a user with low
self-dependency is likely to adopt items based on her
friends’ latent factors. We hypothesize that Social Cor-
relation likely performs better than LDA for users with
low self-dependency and Hybrid should do well on av-
erage for the different groups of users.
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We bin the users into three groups of self-
dependency values with low as iu,u ∈ [0, 13 ), mid as
iu,u ∈ [ 13 ,

2
3 ] and high as iu,u ∈ (23 , 1]. The bins interval

are selected for them to be equal in size. We calculate
for each user the AUC ratios AUC Social Correlation

AUC LDA
and

AUC Hybrid
AUC LDA

. Subsequently, we place each user in one of
the low, mid, high self-dependency groups then calcu-
late the mean of the ratios.

Figures 4 and 5 show the results of Epinions and
LiveJournal for the mean ratios. In each figure, a higher
bar indicates a better performance over the baseline
method LDA. AUC ratio ≈ 1 means comparable perfor-
mance with LDA, while higher ratios mean better per-
formance over LDA. The number in parenthesis next to

each self-dependency label indicates the number of users
in that category.

In both figures, the results indicate that Social Cor-
relation and Hybrid method work very well for users
with low self-dependency values, showing significant im-
provement over LDA: ≥ 30% for Epinions, and ≥ 200%
for LiveJournal. For users with mid self-dependency val-
ues, the improvements over LDA are more modest but
still significant at about 3 − 20%. For users with high
self-dependency, as expected, the results are very simi-
lar to LDA, with slight over-performance by Hybrid and
slight under-performance by Social Correlation. These
findings support our hypothesis that Social Correlation
and Hybrid vastly improve upon LDA’s performance,
especially for users with low self-dependency values.

6.4 Number of Items Besides comparing with the
self-dependency of each user, we also look at the AUC
performance with respect to the number of items each
user has. Figures 6 and 7 show the AUC ratio with
respect to the log of the number of items (movies or
communities) of the users. Users are organized into
different groups based on the items that they have
adopted. The black line parallel to the y-axis gives
the median value for the number of items each user
has. The figures show that Social Correlation helps to
improve prediction for majority of the users in Epinions
and approximately half of the users in LiveJournal.
Hybrid helps to improve the prediction generally for
most of the users in Epinions and LiveJournal. From
these figures, we can also conclude that our methods
(especially Hybrid) are very helpful for improving item
adoption prediction for users with shorter adoption
history (fewer items), while maintaining performance
for users with longer adoption history.
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6.5 Convergence Rate We explained the complex-
ity of the algorithm in Section 5.3. We now proceed
to empirically verify that the EM algorithm for learn-
ing the social correlation matrix is able to converge by
achieving a higher likelihood than LDA and is able to
reach convergence relatively fast. We test our algo-
rithm on a machine with Intel(R) Xeon(R) CPU X5460
@3.16GHz with 24 GB of memory.

Figures 8 and 9 show the likelihood with respect
to time in seconds for Epinions and LiveJournal respec-
tively. The likelihood is calculated using Equation 5.15.
Since we have pre-computed LDA, the likelihood given
by LDA is therefore a constant as shown by the red line
in Figures 8 and 9. In the figures, each dot represents
the likelihood of each iteration. As shown in the figures,
it only takes a finite number of iterations for the likeli-
hood of social correlation to exceed that of LDA. The
time required for these iterations is also quite fast taking
a couple of seconds to reach convergence. The figures
show that the time taken for convergence on LiveJour-
nal is ten times longer than Epinions. This observation
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reflects the correctness of the complexity we calculated
earlier, O(N . max(Mu) . max(Nu)), where max(Mu)
represents the maximum number of items user u has.
Since the number of items in LiveJournal is ten times
larger than Epinions, then on average, each user in Live-
Journal has more items than the users in Epinions.

6.6 Case Studies To illustrate how our proposed
models work differently than other methods, we describe
case studies involving two types of users: one with a low
self-dependency (relying on friends for item adoption)
and another with a high self-dependency (relying on own
latent factors).
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Figure 10: Epinions: Low Self-Dependency User

Low Self-Dependency. Figure 10 shows the pro-
file of techgirl76, a user with low self-dependency as
shown by the number in parentheses. techgirl76 has
adopted three items: Dukes of Hazzard, Star Wars III,
and Freedomland. For each item, we show the prob-
ability of item adoption based on LDA versus Social
Correlation and Hybrid. For all three adoption links,
Social Correlation and Hybrid generate higher proba-
bility values, which suggest that techgirl76 ’s adoptions
are highly motivated by friends’ latent factors. This can



be explained by the difficulty in learning techgirl76 ’s la-
tent factors based on few items, as well as by techgirl76 ’s
dependency on her friends. For instance, techgirl76 has
a very high dependency on another user three ster, with
iu,u′ = 0.736. three ster has adopted the same three
items as techgirl76, as well as another 195 items. The
latent factors learned based on 198 items are likely to
capture three ster ’s preferences well. Moreover, in addi-
tion to three ster, there are also a couple of other friends
who have adopted the three items. So it is likely that
techgirl76 ’s adoptions are based on her friends’ latent
factors, rather than her own.

Harry Potter and the 

Goblet of Fire

Star Wars Episode III: 

Revenge of the Sith

Fantastic Four

Charlie and the 

Chocolate Factory

Spider-Man

Muppet Show - Season 1

Legally Blonde

Batman Begins

Harry Potter and the 

Sorcerer's Stone
jedikermit

0.062

59 other movies

quasar 

(0.901)

3.24E-03               3.79E-03               3.25E-03

7.73E-03               3.16E-03               7.68E-03

2.36E-03               3.95E-03               2.37E-03

0.97E-03               1.53E-03               0.98E-03

5.56E-03               2.23E-03               5.53E-03

4.16E-03               1.67E-03               4.13E-03

3.45E-03               1.49E-03               3.43E-03

3.61E-03               1.45E-03               3.59E-03

3.26E-04               1.39E-04               3.25E-04

Users Items LDA    vs.   Social Correlation    vs.    Hybrid
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High Self-Dependency. Figure 11 shows the
profile of quasar, a user with high self-dependency as
shown by the number in parentheses. In the figure,
quasar shares nine items with her friends, one of whom
is jedikermit shown in the figure. For most of the nine
items, quasar ’s probability of adoption based on LDA is
higher than the probability based on Social Correlation.
This suggests that quasar relies much more on her own
latent factors than the latent factors of her friends. In
addition, quasar has also adopted fifty nine other items
that she does not share with any friend. Given the
high number of items, LDA (and Hybrid) can learn the
latent factors sufficiently well for quasar. Based on the
latent factors, quasar actually likes most of the nine
common items more than her friends do, which supports
the case that quasar is a highly self-dependent user.
This also explains why quasar has a low dependency on
jedikermit, with iu,u′ = 0.062 even though she shares
nine items with jedikermit.

6.7 Topic Analysis Here, we evaluate the effective-
ness of LDA in deriving the latent factors or topics. If
LDA has learned the latent factors or topics well, each
topic would correspond to a cluster of related items.

For ease of illustration, we only show three topics
each for Epinions and LiveJournal. For each topic, we
identify the top items with the highest latent factor
values for that topic. Table 4 shows a sample of the
top movie titles in each topic for the Epinions data
set. The movies in each topic tend to be similar in
terms of their genres. For instance, movies in Topic E1
such as the Spider-Man and Lord of the Rings series are
action movies. Movies in Topic E2 are dramas such as
Erin Brockovich and Fight Club. Movies in Topic E3
seem to be comedies. Intuitively, these three topics also
correspond to the three most popular genres in the data
set: action, drama, and comedy.

Table 4: Example Top Movie Titles for Each Topic in
Epinions

Topic E1 Topic E2 Topic E3

Spider-Man Erin Brockovich Shrek

Spider-Man 2 Fight Club Charlie’s Angels

Batman Begins American Psycho What Women

Want

Lord of the Rings:

The Two Towers

Magnolia Meet the Parents

Lord of the Rings:

The Return of the

King

American Beauty Miss Congeniality

Table 5 shows a sample of the top communities in
each topic for the LiveJournal data set. The names of
communities in LiveJournal draw from a wide variety
of languages with Russian being a dominant language
as seen by the prefix ru in the communities name.
Topic L1 shows preference for East Asian culture.
“jpop” is a synonym for Japanese Pop Music, “kpop”
for Korean Pop Music, “jdramas” for Japanese Drama,
“anime” and “manga” are terms for Japanese cartoons.
Topic L2 is of Information Technology subjects and
Topic L3 shows art and design.

Table 5: Example Top Communities for Each Topic in
LiveJournal

Topic L1 Topic L2 Topic L3

free manga ru webdev ru designer

anime downloads ru linux ru photoshop

jdramas ru sysadmins design books

jpop uploads ru software ru illustrators

kpop uploads ru programming ru vector



7 Conclusion

In this paper, we address the problem of item adoption
prediction based on both latent factors as well as
social correlation. We incorporate a probabilistic social
correlation matrix into a factorization approach based
on LDA, and formulate two models: Social Correlation
and Hybrid. To solve the models, we propose an efficient
solution that scales with the number of observed links.
Our models are based on several key ideas. In making
item adoption choices, users are not motivated just
by their own latent factors, but also by their friends’.
The degree to which a user correlates to their friends’
latent factors is not uniform, rather it differs from one
user to another. Our experiments with Epinions and
LiveJournal data sets show that the Social Correlation
and Hybrid approaches outperform LDA.

There are several directions for future work. While
in this work we have used LDA, we are also interested
in investigating how the social correlation can also be
used in conjunction with other factorization methods
such as BPMF or SVD. Here we have focused very much
on item adoption prediction based on social links, the
reverse of the problem is equally interesting: whether
we can predict social links based on item adoptions.
Finally, the item adoption framework could potentially
be extended to the rating prediction task.
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